ViFi:

Virtualizing WLAN using Commodity Hardware

Katherine Guo(Bell Labs), Shruti Sanadhya (HP Labs) and Thomas Woo (Bell Labs)

September 11, 2014

Motivation

- WiFi infrastructure is ubiquitous, increasingly used for data offloading
- Need for multiple operators to share this infrastructure
- Enable Software Defined Networking for WiFi

 Goal: to provide more control (beyond authentication) to virtual network operators on virtual WiFi networks (traffic isolation)

What to Virtualize?

Virtualization through resource sharing in wireless networks

Resources in wireless networks

- Backhaul network -- capacity to and from the core network
- Processing -- compute and memory for packet processing inside the access points (APs)
- Wireless medium (air or spectrum)
 - Different frequency bands (802.11 channels) for different virtual operators
 - Single channel used by multiple operators

DCF Access Mode for 802.11 MAC

Deployed 802.11 use Distributed Coordination Function (DCF)

- Exponential back-off based CSMA/CA
- CW: Contention Window
- Back-off timer randomly chosen from [0, CW-1]
- Station doubles CW from CWmin to CWmax after sensing busy channel

DIFS: Distributed Inter-Frame Space SIFS: Short Inter-Frame Space

802.11 Quality of Service Enhancements

802.11e Enhanced Distributed Channel Access (EDCA) mechanism

- Transmission Opportunity(TXOP) maximum time duration during which a station has the right to initiate transmissions without contention
- Allows varying CWmin
- Allows varying TXOP

802.11 802.11

• Frame aggregation Each station can set its maximum aggregation limit (equivalent to TXOP)

The AP can advertise these values for stations in Beacon frames

Allows one set of (CWmin,TXOP) parameters for each SSID

Practical DCF controls in 802.11

Optimal CWmin to maximize system throughput

CWmin_{opt} = sqrt[(E[P]+100)/9] * (n-1)

- All n stations transmit with the same data rate (54 Mbps)
- Same MAC payload size P bytes
- CWmin can only be power of 2
- Tput₁ / Tput₂ = CWmin₂/CWmin₁

• Inverse proportion holds for $CWmin_i >= 8$

Coarse-grained

- $Tput_1 / Tput_2 = TXOP_1 / TXOP_2$
 - Proportional relation holds linearly only when Tput₁ / Tput₂ in range [1,2]

Fine-grained

······Alcatel·Lucent 🥢

Virtual WiFi (ViFi) Concepts

- Service Flow: unidirectional traffic between an AP and a user station
- Slice: a group of service flows
- Service Level Agreement (SLA) between virtual operators and ViFi infrastructure providers
 - Per-slice air-time guarantees: % total air-time
 - Per-station: Either air-time share or throughput share
- Maximize overall system throughput using CWmin_{opt} CWmin_{opt} = sqrt[(E[P]+100)/9] * (n-1)
 - Compute system size by mapping each physical station to multiple virtual stations
 - Example: An AP serves uplink flows from two stations: A₁ (60%) and A₂ (40%)
 - Station $A_1 = 3$ virtual stations
 - Station $A_2 = 2$ virtual stations

Testbed Experiments

- Cisco Aironet 802.11a/b/g adapter (Atheros) in 2.4 GHz g mode
- MadWiFi-0.9.4 device driver
- Iperf UDP traffic with MAC frame size 1500B
- Single data rate of 54 Mbps

•••••••Alcatel Lucent 🕢

DCF Configuration

Compute system size

- A1=A2=B1=B2= 1 virtual station
- AP = 6 virtual stations (all downlink flows)
- Total of n=10 virtual stations

•
$$\text{CWmin}_{\text{opt}} = 54$$
, ($2^5 < 54 < 2^6$) $\rightarrow \text{CW}_{\text{lo}} = 32$

Uplink configuration

- $\text{CWmin}_{\text{sta}} = \max(8, \text{CW}_{\text{lo}}) = 32$
- TXOP_{sta} = 256 usec (802.11g) or **zero**

Downlink configuration

• 6 virtual stations = 4 * 1.5

•
$$\text{CWmin}_{\text{ap}} = \text{CW}_{\text{sta}} / 4 = 32 / 4 = 8$$

Alcatel · Lucent

Fine-grained

9 |

ViFi Honors SLA in Terms of Air-time Share

10 |

ViFi Honors SLA in Terms of Traffic Isolation

- A1 shuts down or moves away from the AP, with same SLA
- A2 = 2 virtual stations, B1=B2= 1 virtual station
- AP: Still 6 virtual stations, split as 4 (A2) + 1 (B1) + 1 (B2)
- Total of n=10 virtual stations → same CWopt
- CW_{A2} = CW_{sta}/2 = 32/2 = 16

Concluding Remarks

- ViFi is a practical solution to virtualize WLAN for sharing across multiple operators
- ViFi provides mechanism for service differentiation and traffic isolation between virtual operators

Ongoing and future work:

- SLA in terms of throughput share
- Dynamic ViFi : monitor and predict the changes in group size
- Multi-AP setting: interference reduces overall system throughput but not affect SLA
- Mobility of user stations: translates to change in data rate

Thanks!

